Human digital traces mobility, sewage and social media

Dr. Francesco Durazzi

francesco.durazzi2@unibo.it

Looking for traces

Information about human behavior is useful in many research field, but:

Privacy concerns

High costs

The *digital era* offers new ways to get a statistical glimpse on human-related data -> **it's not psicology**

Trace: a measurable quantity which describes the subject behaviour (without necessarily the intent of the subject)

Disclaimer: a health perspective

Focus on epidemiological surveillance:



How to? Systematic collection, analysis and interpretation of data

e.g. genomics, animal mobility flows, opinions on online social networks...

DIGITAL TRACES Characteristics of online social network data

Real-time view on society

Different types of data together: text, location, timestamp, images

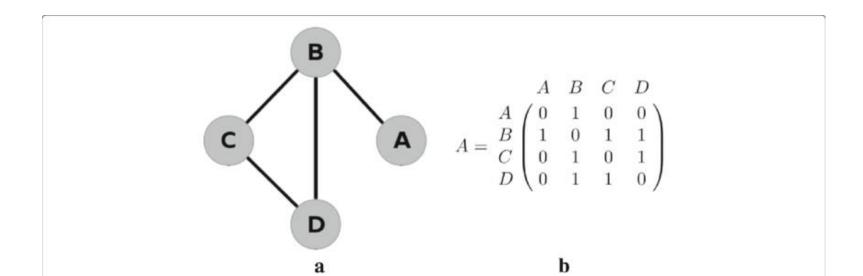
Straightforward network structure with different types of interactions

Networks in a nutshell

Graph G(V,L): finite set V of *n* elements (nodes, vertexes) and set of *k* couples of nodes (links, edges)

A network/graph can be defined through its *adjacency matrix* -> compute centrality measures

e.g. connectivity degree k_i : row/column sum (number of neighbours of a node)

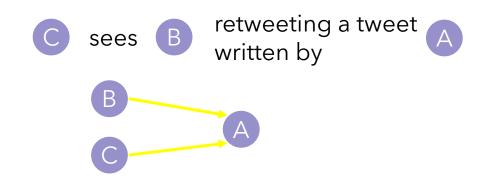


Retweet network (X platform)

 $A \rightarrow B$ if user A **retweets** user B.

Weight: number of retweets. Interpretation: agreement.

The edge is always between the retweeting user and the writing user: the intermediate retweet structure is <u>hidden</u>. One tweet form a star-like graph, so the final network is an aggregation of star-like modules. <u>Densely connected modules can be thought of people sharing the same ideas</u>.



Centrality measures

Network analysis

Community structure

Linking network structure to other attributes: text, geolocalization

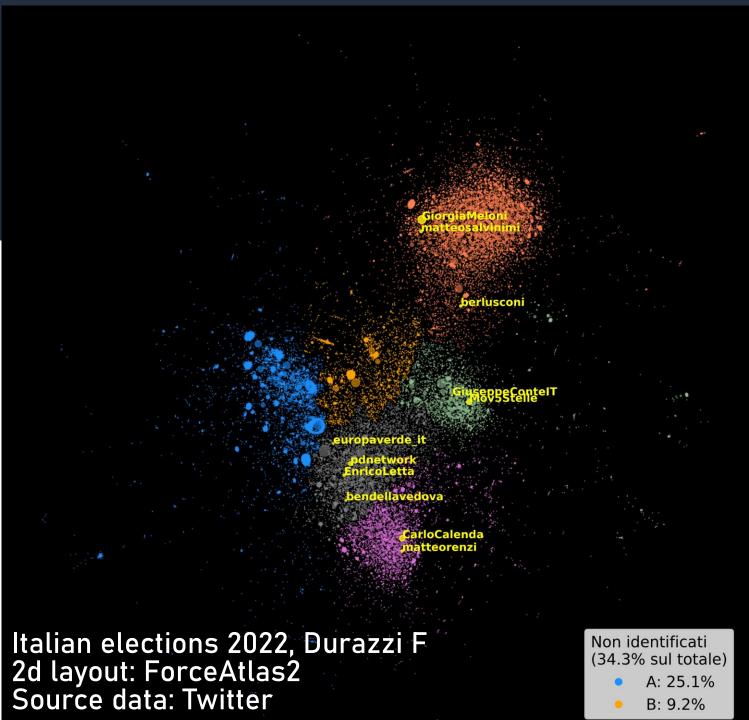
Community detection

Objective: find groups of users maximizing the intra-community modularity Q

$$Q_{ij} = A_{ij} - \frac{k_i k_j}{2m}$$

In plain words, maximize the number of edges inside the community w.r.t. those expected by chance

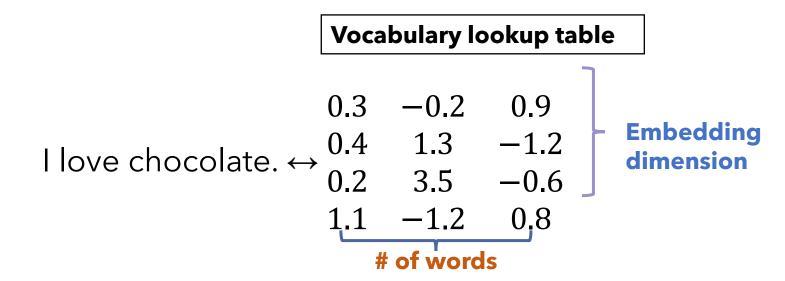
See more details on my Linkedin



Not just networks: text embeddings

Mapping text into vector spaces allows Machine Learning and Artificial Intelligence applications:

- Clustering
- Classification
- Regression
- Vector operations (eg sum/difference, average)



Not just networks: text embeddings

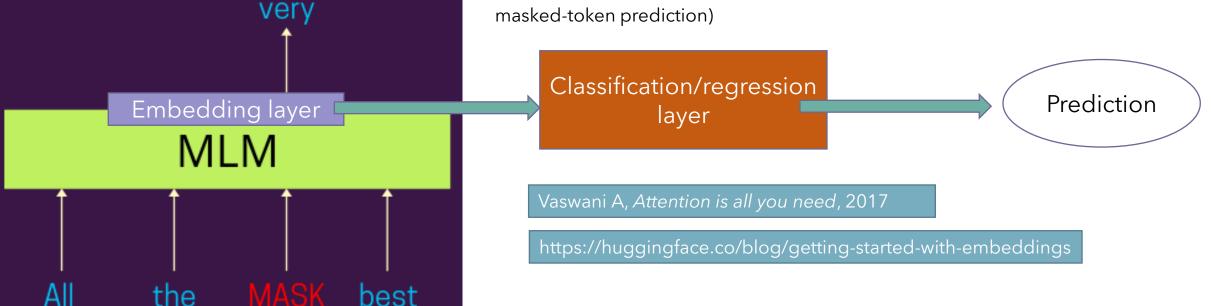
Language Modeling (LM) is a very popular way to embed text using neural networks (specifically attention-based transformers)

1) Pre-training as Language Model: model predicting missing/masked words in a sentence (self-supervised on large corpora, e.g. www, Wikipedia, Twitter) -> to predict the masked word, all the sentence is encoded in its embedding layer

2) Task-specific **fine-tuning**: final classification/regression layer for the final task (supervised regression/classification on labelled data)

With Step1, the models "learns the language" in general and with Step2, it learns how to deal with specific tasks

You can extract sentence-embeddings as the second-last layer (the one before masked-token prediction)



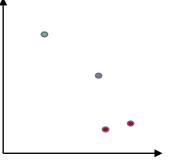
ProVax and AntiVax classification through network and text fetaures

- Embedding of Tweets text into a N-dimensional

Text	Label	User ID
Odio i vaccini	AntiVax	1
Non vaccinatevi mai	AntiVax	1
Oggi partono le vaccinazioni.	Neutral	2
Vaccino fatto	ProVax	2

Gori D, Mis-tweeting communication: a Vaccine Hesitancy analysis among twitter users in Italy, Acta Biomedica, 2021

Text embeddings



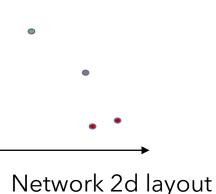
ProVax and AntiVax classification through network and text fetaures

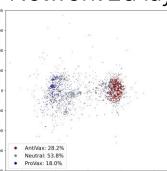
Embedding of Tweets
 text into a N-dimensional
 space (BERT transformer)

Represent **users as community-based vectors** (participation ratio)

Text	Label	User ID
Odio i vaccini	AntiVax	1
Non vaccinatevi mai	AntiVax	1
Oggi partono le vaccinazioni.	Neutral	2
Vaccino fatto	ProVax	2

Gori D, Mis-tweeting communication: a Vaccine Hesitancy analysis among twitter users in Italy, Acta Biomedica, 2021 Text embeddings





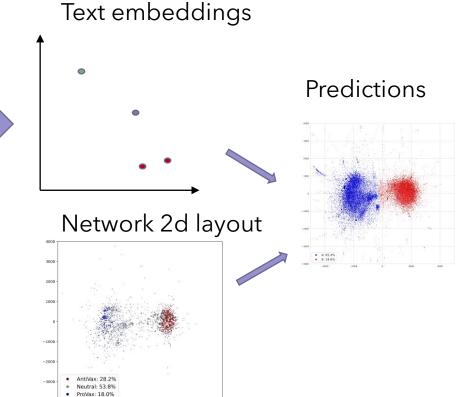
ProVax and AntiVax classification through network and text fetaures

Embedding of Tweets
 text into a N-dimensional
 space (BERT transformer)

Represent **users as community-based vectors** (participation ratio)

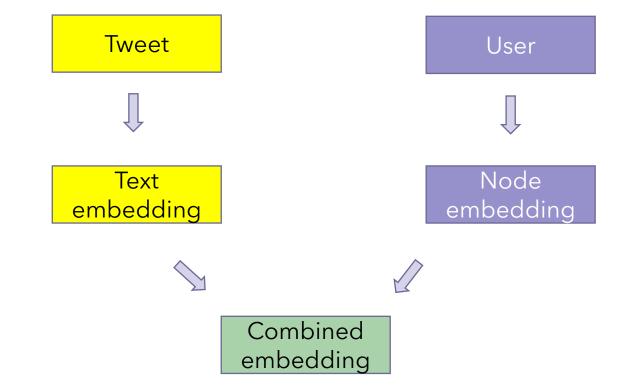
Text	Label	User ID
Odio i vaccini	AntiVax	1
Non vaccinatevi mai	AntiVax	1
Oggi partono le vaccinazioni.	Neutral	2
Vaccino fatto	ProVax	2

Gori D, Mis-tweeting communication: a Vaccine Hesitancy analysis among twitter users in Italy, Acta Biomedica, 2021



ProVax and AntiVax classification through network and text fetaures

- Embedding of Tweets text into a N-dimensional space (BERT transformer)
- Represent users as community-based vectors (participation ratio)
- Merge text and network features to classify users (Deep learning or simpler)
- Merge text and network features to classify users (Deep learning or simpler)



Scientific literature automated search and analysis

We collected the whole Pubmed archive

Choose topics of interest: e.g. COVID-19

Citation network

Topic modelling: transform abstracts into vectors and clusterize them to extract the different topics

Natural Language Processing and Regular Expressions to extract information: values, keywords, results

Scientific literature automated search and analysis

Early detection of relevant papers

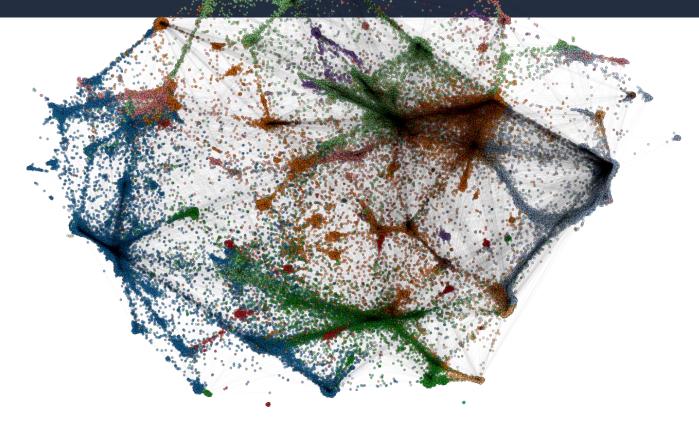
Automated approach to:

- Measure citation growth speed
- Build autor-level features
- Explore the relationship between groundbreaking papers and network structure: "hub" authors & papers

Success is driven by connections? <u>https://bigthink.com/the-well/the-science-of-success/</u>

Citations are indicators of good quality?

https://link.springer.com/article/10.1007/s11192-023-04735-0



Environmental traces

Epidemiological monitoring at urban level

Clinical and mobility data integrated to wastewater sequencing

Environmental traces

Epidemiological monitoring at urban level

Clinical and mobility data integrated to wastewater sequencing

Epidemic entanglement

Difficult to disentangle single contributions of epidemic drivers *Example*: at now, the number of COVID-19-infected individuals is way lower than during the pandemic peaks of 2020-2021. This is due to:

- a) lower transmissibility of the virus?
- b) increased vaccination coverage?
- c) mutated social habits? (distancing, facial masks)
- d) different climatic conditions?
- e) less testing

3-year monitoring of COVID-19 in Bologna metropolitan area

Epidemiological mathematical model adjusted on clinical data

RNA sequencing on urban sewage

Emergence of SARS-CoV-2 lineages over time through genomic data

Road traffic time series

Vaccination coverage of the population

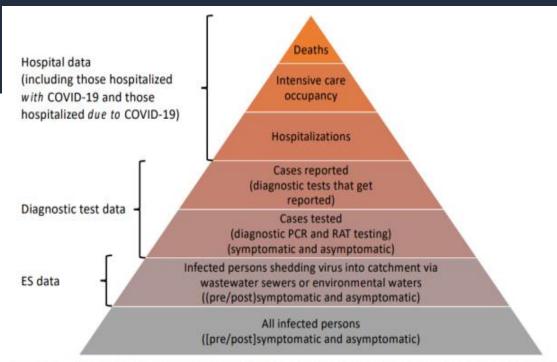


Figure 1. Illustration of the role of SARS-COV-2 environmental surveillance as a source of data on COVID-19 and SARS-CoV-2 in communities via a defined wastewater catchment⁵.

 Martin, J.; Klapsa, D.; Wilton, T.; Zambon, M.; Bentley, E.; Bujaki, E.; Fritzsche, M.; Mate, R.; Majumdar, M. Tracking SARS-CoV-2 in Sewage: Evidence of Changes in Virus Variant Predominance during COVID-19 Pandemic. Viruses 2020, 12, 1144. doi:

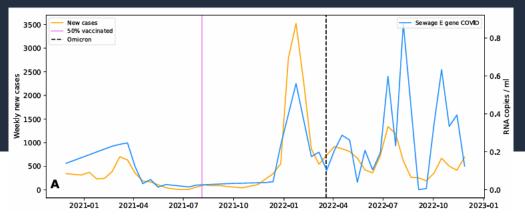
10.3390/v12101144

- Izquierdo-Lara R, Elsinga G, Heijnen L, Munnink BBO, Schapendonk CME, Nieuwenhuijse D, Kon M, Lu L, Aarestrup FM, Lycett S, Medema G, Koopmans MPG, de Graaf M. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerg Infect Dis. 2021 May;27(5):1405-1415. doi: 10.3201/eid2705.204410.
- Nattino G, Castiglioni S, Cereda D, et al.
 Association Between SARS-CoV-2 Viral Load in Wastewater and Reported Cases, Hospitalizations, and Vaccinations in Milan, March 2020 to November 2021. JAMA. 2022;327(19):1922-1924. doi:10.1001/jama.2022.4908

⁵ World Health Organisation (WHO) Environmental surveillance for SARS-COV-2 to complement public health surveillance, 14 April 2022. WHO-HEP-ECH-WSH-2022.1-eng.pdf. Environmental surveillance for SARS-COV-2 to complement public health surveillance – Interim Guidance (who.int)

Methods

- Sampling twice per month (November 2020 November 2022)
- RNA extraction and real-time PCR on SARS-CoV-2 E-gene
- Viral load estimation from serial dilutions



Results

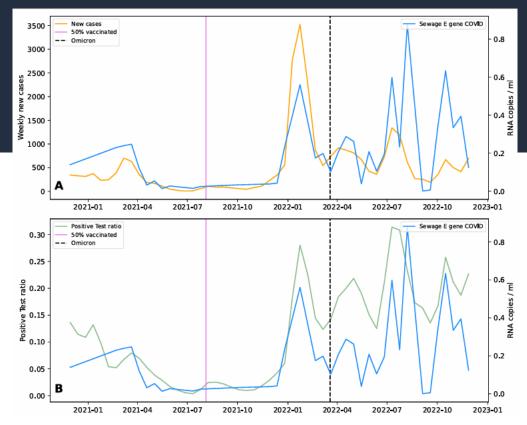
- Correlation between sewage viral load and number of cases: positive test ratio (r=0.73)
- Hospitalizations decline but viral load increase

Methods

- Sampling twice per month (November 2020 November 2022)
- RNA extraction and real-time PCR on SARS-CoV-2 E-gene
- Viral load estimation from serial dilutions

Results

- Correlation between sewage viral load and number of cases: positive test ratio (r=0.73)
- Hospitalizations decline but viral load increase

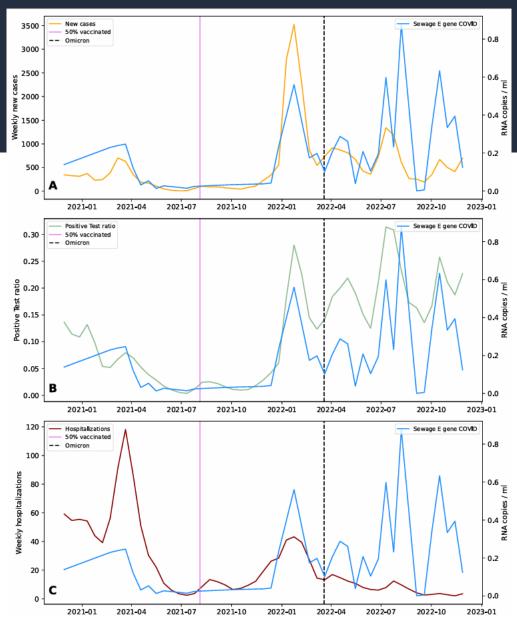


Methods

- Sampling twice per month (November 2020 November 2022)
- RNA extraction and real-time PCR on SARS-CoV-2 E-gene
- Viral load estimation from serial dilutions

Results

- Correlation between sewage viral load and number of cases: positive test ratio (r=0.73)
- Hospitalizations decline but viral load increase



Sociability: amount of social activity,

estimated from the number of infections

through an epidemiological model

Mobility: measured from road traffic in

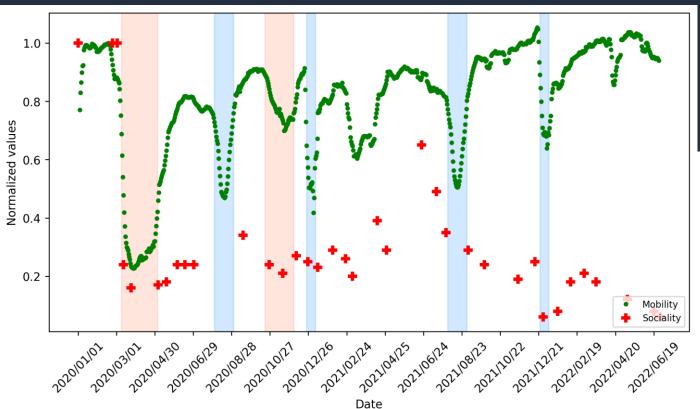
Bologna

Sociability: amount of social activity, estimated from the number of infections through an epidemiological model

Mobility: measured from road traffic in

Bologna

- Red areas: lockdowns and curfews
- Blue areas: holidays

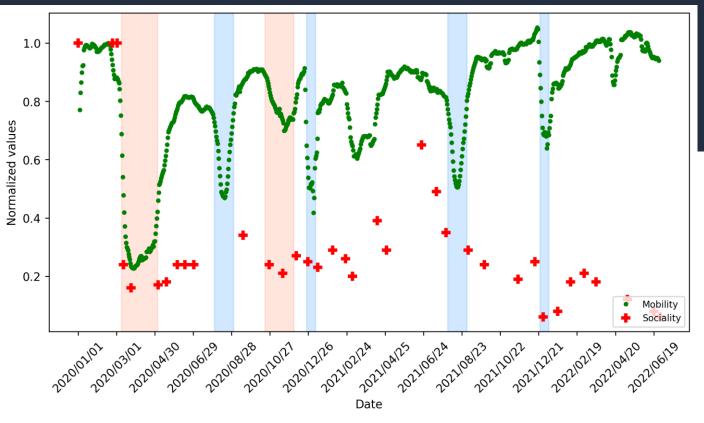


Sociability: amount of social activity, estimated from the number of infections through an epidemiological model

Mobility: measured from road traffic in

Bologna

- Red areas: lockdowns and curfews
- Blue areas: holidays
- **Mobility** is critically impacted at the first lockdown (February 2020)
- **Mobility** slowly recovers to prepandemic values, with down-ward peaks at holidays and closures



 Sociability impacted at the first lockdown (same as mobility), but remains generally low -> contacts are now protected and viruses are weaker

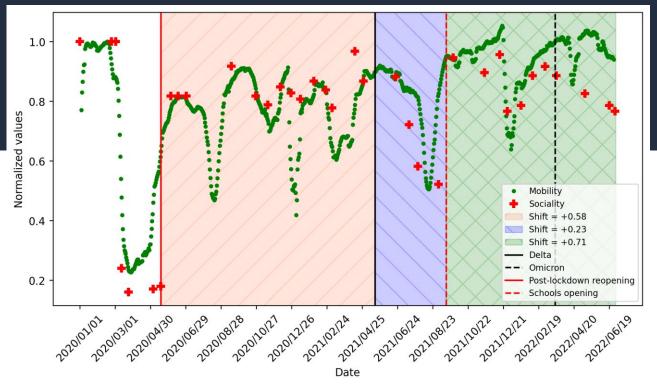
3 breakpoints: shift to re-

normalize mobility and sociability

(on the first value)

[Day	Event	
	18/05/2020	Activities reopening (bar, restaurants)	0.58
	17/05/2021	Delta variant in Emilia Romagna	0.23
	15/09/2021	Schools reopening	0.71

- High correlation (r=0.76)
- Mobility can be used as a proxy to parametrize sociability in the model for short periods (3 months at least)



- Shifts ~ gap between protected and unprotected contacts
- Small shift at outbreak (still not much protection) and summer
 2021
- Larger shifts during periods of increased sensitivity to control measures (distancing, facial masks)

Conclusions

We live in an era where many traces are available:

to big tech corporates: surveillance capitalism

to «investigative» scientists: reveal unexpected associations and hidden correlations

For a physicist, new areas emerge in which laws can be proposed and their validity verified through measurements and experiments

Conclusions

We live in an era where many traces are available:

to big tech corporates: surveillance capitalism

to «investigative» scientists: reveal unexpected associations and hidden correlations

For a physicist, new areas emerge in which laws can be proposed and their validity verified through measurements and experiments

Happy hunting for traces!